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Abstract

One of the key benefits or future hardware implementations of certain

artificial neural networks (ANN's) is their apparently "built-in" fault
tolerance which makes them potential candidates for critical tasks with

high reliability requirements. This paper investigates the fault-tolerance

characteristics of time-continuous, recurrent ANN's that can be used
to solve optimization problems. The principle of operation and the

performance of these networks are first illustrated by using well-known
model problems like the traveling salesman problem and the assignment

problem. The ANN's are then subjected to up to 13 simultaneous "stuck-
at-1" or "stuck-at-O" faults for network sizes of up to 900 "neurons."

The effect of these faults on the performance is demonstrated and the

cause for the observed fault tolerance is discussed. An application
is presented in which a network performs a critical task for a real-

time distributed processing system by generating new task allocations

during the reconfiguration of the syitem. The performance degradation

of the ANN under the presence of faults is investigated by large-scale
simulations, and the potential benefits of delegating a critical task to a

fault-tolerant network are discussed.

1. Introduction

In spite of the fast-growing complexity and power of modern computer technology, there are

a number of tasks in information processing that seem to be inherently difficult if not intractable

for conventional computer systems. These are tasks like pattern recognition, nonlinear adaptive

control, or autonomous navigation that are routinely ma_stered not only by humans but also by

much "simpler" biological systems. The principles of biological information processing appear to

be completely different from the way that conventional computers operate. This might explain

why computers have such difficulties with tasks from the "biological domain" and vice versa.
Current research in neural networks addresses these issues and seeks to explore and understand

these principles of biological information processing. Recent years have seen an immense growth

in those activities, which produced a variety of abstract models called artificial neural networks

(ANN's) that are inspired by and loosely based on our current understanding of the operation

of simple biological systems.

Although most ANN's bear little resemblance to real nervous systems and do not actually

claim to be biologically plausible, they try to incorporate some of the key aspects of biological

information processing. These are, for example, the capability to learn and to adapt to

environmental changes, the distributed storage of information, and an architecture based on

many simple computational units (model "neurons") that are interconnected and operate in

parallel. Several dozen distinct types of ANN's exist that have been developed for specific

purposes, but a survey or classification of these types is beyond the scope of this paper. A general

introduction into so-called neural computing can be found, for example, in work by Kohonen

(1988); Pao (1989); Rumelhart, McClelland, and PDP Research Group (1986); Wasserman

(1989); and Zornetzer, Davis, and Lau (1990).

We are especially interested in another very intriguing characteristic of biological as well as

artificial neural networks, that is, their apparently inherent fault tolerance. The fault tolerance of

conventional systems is a carefully calculated design goal that requires some form of hardware or

software redundancy which increases the complexity of the system. That is, it is always possible

to build a simpler system without the redundancy, and this system has the same performance

under fault-free conditions as the fault-tolerant system. In contrast, the fault tolerance of neural



networks seems to be inseparable from their functional characteristics and is neither planned nor
can it be removed. This fault tolerance has been demonstrated for various ANN's, but only as a

side effect and without a systematic investigation of the underlying causes. (See Anderson 1983;

Sejnowski and Rosenberg 1986; Hinton and Sejnowski 1986; Hutchinson and Koch 1986.) A few
studies focused more explicitly oi1 the fault tolerance (Hinton and Shallice 1989; Belfore and

Johnson 1989; Petsche and Dickinson 1990), and we will discuss their approaches and results in
section 5.

In this paper we will investigate a particular ANN model that was published by Hopfield
in 1984 and can be used to solve certain optimization problems. In the following discussion

we will adopt the term optimization networks for these ANN's, a term that was coined by

Tank and Hopfield (1986). The network can be implemented as an electronic circuit with

nonlinear operational amplifiers representing the neurons and feedback connections between

the amplifiers. The resulting complex, nonlinear dynamical system has many different stable
states that represent local energy minima. If the system is properly designed, then these stable

states correspond to the solutions of a target optimization problem. Thus, the system "solves"

the optimization problem by converging from an initial state with partial information about the

solution to a local energy minimum that corresponds to a good, if not the best, solution.

Although optimization networks were initially applied to classical problems like the traveling
salesman problem, we are more interested in potential applications, in real-time processing and

control systems. For example, an optimization network implemented in analog hardware could

perform a real-time scheduling or control task as a component of a hybrid system. If this is a
critical task with high reliability requirements, then the allegedly "built-in" fault tolerance of

the neural network becomes a key factor. With such applications in mind, we will investigate the
fault tolerance of optimization networks and quantify the performance degradation in simulated

"fault-injection" experiments. A broader goal is to gain insight into the principal character of

the fault tolerance of these neural networks and to explore the underlying cause.

The following two sections of this paper contain a comprehensive introduction to optimization
networks. Section 2 describes the architecture and equations that govern the dynamics of the

network. The principle of how to solve an optimization problem by "mapping" it onto the

network is explained in section 3 for two example problems, the assignment problem (AP) and

the traveling salesman problem (TSP). Readers who are already familiar with the operation of
optimization networks might want to skip these introductory sections and start with section 4

which introduces a performance measure that allows a meaningful assessment of how well the

network actually Solves the AP and TSP. Such a performance measure is a prerequisite for

quantifying the performance degradation in the presence of simulated faults that are "injected"
into the network. Section 5 presents these results for the AP and TSP that are used again

as model problems and discusses the cause and effect of the observed fault tolerance. Finally,
section 6 describes an application in which an optimization network is used for the real-time task

allocation in a fault-tolerant, distributed processing system. The network is a critical component

in this application and its fault tolerance is an essential requirement for the operation of the

system. Thus, we will again illustrate how this network performs under the presence of faults

and quantify the performance degradation in large-scale simulations. The concluding remarks
in section 7 summarize the main results and discuss the prospects of optimization networks for

different application areas.

2. Optimization Networks

In 1982, Hopfield introduced a network of interconnected model neurons that function as an
associative memory with stable states corresponding to stored binary patterns. The development

of this model was inspired by the observed behavior of certain physical systems that exhibit



collectivephenomena,suchasstablemagneticorientations,asa resultof the interactionsamong
a largenumberof elementary components. This associative memory model is often referred to

as HopfieId's discrete model because it uses two-state (binary) neurons and is discrete in time

as well as in state space. As an extension of this work, Hopfield (1984) proved the stability

of a time-continuous model that has stable states corresponding to the discrete model and can
be realized in hardware by an analog electronic circuit with operational amplifiers. This model

attracted much attention, especially after Hopfield and Tank demonstrated in 1985 how it can

be used to solve hard optimization problems like the TSP.

Figure 1 shows a general optimization network in the form of an electrical circuit model

(Hopfield and Tank 1985) with n interconnected amplifier units (neurons) as the active circuit

elements. The model allows resistive feedback from any output Vj to any input ui with a resistor

value Rij or a conductance Tij = 1/Rij, respectively. The current Ii can be used to provide an
external input to the network. The nonlinear, sigmoidal transfer function that determines the

relation between an input ui and an output V/is given by

where

= _ 1 + tanh = 1 + exp[-4A (ui - us)] (1)

1 d_ ui=us)_- 2uo -- dui

The parameter A denotes the slope of the transfer function at the inflection point ui = us and

constitutes the maximum gain of the amplifier. This transfer function is depicted in figure 2 for

a particular choice of the parameters A and us. The offset Us is sometimes explicitly used as an
additional parameter (Brandt et al. 1988), but it can be incorporated into the current Ii which

has also the effect of shifting the transfer function horizontally.

I1--'_'(>--"-'-_ - --- rli_C 1 u 1 I_

---_, o _F# =-.L.._. j, / _.._ rni iCn u
T.. r.3 T.2 T._ T n

---------oVI

-------.oV2

---------oV3

oV n

Figure 1. Circuit diagram of optimization network according to Hopfield (1984). Note that negative feedback can be

realized by connecting positive conductances T_j to negative output -Y_ of unit (not shown in this figure).

Positive and negative feedback connections, which correspond to excitatory and inhibitory

synapses in biological neurons, respectively, can be mathematically described by positive and

negative values for Tij. Here, Tij is commonly referred to as the weight of the connection between
the output of unit j and the input of i. In an electronic circuit realization, Tij =- 1/R/j can only

3
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Figure 2. Nonlinear transfer function of unit. Shift us = 0.5; Gain A = 2.5; V/- ] + exp[-4k(ui - Uz)]"

be positive, and negative feedback requires the use of an additional output -_ for unit i ranging

fi'om 0 to -1. Connecting Rij to the negative output realizes negative or inhibitory feedback.
The intrinsic delay exhibited by any physical amplifier as well as by a biological neuron is

modeled by an input resistance r i and capacitance Ci. These are drawn as external components

in figure 1 so that the actual amplifier can be described as an ideal component with no delay. 1
A circuit analysis of the network in figure 1 yields the "equations of motion"

cidu i ui n
- + F_,TuVJ+ (2)

j=l

that describe the time evolution of the dynamical system where t denotes time. (Appendix A

shows in detail how this circuit analysis is performed.) In equation (2), Ri represents the

parallel combination of the input resistance ri and all the weights Tij = 1/Rij connected to
unit i according to

1 1 n
- + Tu (3)

/?4 ri
j--1

Equation (2) is usually simplified by assuming 2 that Ri =- R and Ci -- C for all units i.

Hopfield (1984) proved the stability of the nonlinear dynamical system in equation (2) for

symmetric connections (T/j = Tji ). By introducing a Liapunov function, he showed that in the
high-gain limit (A _ oc) the stable states of the system correspond to the local minima of the
quantity

E
i=1 j=l i=1

which Hopfield refers to as the computational energy of the system. This means that the

dynamical system moves from an initial point in state space in a direction that decreases its

] This is, however, an idealized model of a practical mnplifier according to Smith and Portmann (1989). More realistic

models might lead to instability of the system. (See also Marcus and Westervelt (1989).)

2 Note that the assumption of a constant Ri is difficult to realize in practice because different values for the input

resistances r i would have to compensate for variations of the sum of the weights according to equation (3). These variations

are considerable if problem-specific data are encoded in the weights as in the case for the TSP.

4



energyin equation(4) and comesto a stop at oneof the manylocal minima of the energy
function. A detaileddiscussionof this stability proofand the underlyingassumptionscanbe
foundin appendixB.

Grossberg(1988)showedthat the Liapunovfunction in equation(4) for the systemin
equation(2) is a specialcaseof a morecomplexLiapunovfunction introducedby Cohenand
Grossbergin 1983,so that equation(4) might not be consideredas a new result in itself.
Nevertheless,this doesnot diminishHopfieldand Tank's(1985)maincontribution,whichcan
beseenastheir methodof associatingthe equilibriumstatesof the networkwith the (local)
solutionsof anabstractoptimizationproblemlike theTSP.Thismethodisreviewedin the next
section.

3. Solving Optimization Problems: Principle of Operation

This sectiondescribesin detailhowthe dynamicalbehaviorof the networkcanbe usedto
solvecertainoptimizationproblems.In orderto mapanoptimizationproblemontothenetwork,
a suitablerepresentationhasto bedefinedand'the networkparametersTij and fi have to be
derived from a suitable mathematical description of tile problem. Section 3.1 illustrates the

basic principles by using a simple constraint satisfaction problem, which does not include a
cost function but constitutes an important building block. Sections 3.2 and 3.3 then describe

how a network can be used to solve two well-known optimization problems, the assignment

problem (AP) and the traveling salesman problem (TSP).

3.1. Problem Representation and Constraint Satisfaction

The basic idea behind the operation of optimization networks can be stated as follows: If it

is possible to associate the solutions of a particular optimization problem with the local minima

of the energy function in equation (4), then the network solves the problem automatically by

converging from an initial state to a local minimum, which in turn corresponds to a (local)
solution of the problem. This association requires a suitable problem representation, that is,

an encoding of the problem by using the state variables _ of the network. For example, the

output _ of a unit ranging from 0 to 1 can be used to represent a certain hypothesis that is

true for V/= 1 and is false for V_ = 0. Different hypotheses can be encoded by different units

and the hypotheses might have to satisfy certain constraints. If the final state of the network is
supposed to represent a particular solution, it is usually required that the outputs Y_ eventually

converge to either 0 or 1 in order to obtain a decision. In this sense, the process of convergence
with intermediate values 0 < V_ < 1 could be interpreted as the simultaneous consideration of

multiple, competing hypotheses by the network before it settles into a final state (Tagliarini and

Page 1987).

A typical "building block" of optimization networks is a one-dimensional array of units that

represents a set of n hypotheses under the constraint that only k out of n hypotheses can be

true. Page and Tagliarini (1988) used this example to illustrate the basic principle of mapping
a problem onto an optimization network. Mathematically, the problem can be stated as

n

Z = k (5)
i=1

where

e (0, 1)

so that exactly k out of n units are "turned on" in the final state (k _< n). Note that _ in

equation (5) is a binary variable limited to the values 0 and 1. The mapping requires that



equation (5) be in the form of a quadratic function so that the minima of that function can

represent the solutions to the problem. In this example, we can define the problem-specific

"energy function" Ek, n as

Ek,, = Vi - k + Vi (1 - V/) (6)

i=1

The first term in equation (6) has minima for all combinations of V/for which the sum of the V/

is equal to k, but this alone is not yet equivalent to equation (5) because the additional condition

V/E (0, 1) has to be explicitly enforced. This is done by the second term in equation (6), which

has its minima at points where V/ is either 0 or 1. After expansion of the quadratic term using
the relation

• j

equation (6) can be rewritten as

Tt n 72 n

Ek, n = _ _ _Vj - _ V/2 - Z t_ (2k -1) + k 2 (7)

i=l j=l i=l i=l

The term k 2 is independent of V/and represents only a scaling factor that can be omitted without

loss of generality because the absolute value of Ek, n is irrelevant in this context. After some
further rearrangement, we get

T/ n 7/
1

Ek,n=--_-_-_ - 2 (1 - (_ij) ViVj - _ TV_(2k - 1) (8)
i=1j=1 i=1

with _ij denoting the Kronecker symbol (_ij = 1 for i = j, but 0 otherwise).

Mapping a problem onto the optimization network is equivalent to determining the network

parameters Tij and [i by comparing the Liapunov function of the network (eq. (4)) with the

problem-specific energy flmction. In our example, setting E = Ek, n identifies the solutions of

the problem (minima of Ek,n) with the stable states of the network (minima of E). With

Ek, n expressed as in equation (8), it can be seen that equations (8) and (4) are equal if

Tij -- -2(1 - 5ij) and Ii = 2k - 1. This means that a network with n units and these parameters

converges from any initial state to a final state in which k out of n outputs are on (Vii = l) and

all other outputs (k - n) are off (_ = 0)) _ Figure 3(a) illustrates the resulting architecture, and

figure 3(b) shows a more abstract, equivalent representation of the same network.

This kind of connectivity with negative feedback connections from every unit to every other

unit is also called lateral inhibition. In this case, there is no negative feedback from a unit to

itself, or no self-inhibition. Each unit i acts to inhibit all the other units with a negative feedback

signal, which has a strength proportional to its current output V/. Because all the units seem

to compete with each other, these networks with lateral inhibition are also called competitive

networks. Thus, the units that are on after the network reaches a stable equilibrium state are

the winners of the competition.

Which unit converges to an on state and wins the competition depends solely on the initial

values of ui. The time evolution of the network as described by the equations of motion requires

3 Strictly, the values V/= 0 and V_.= I are reached only in the limit because of the characteristics of the sigmoidal transfer
function; for practical purposes, it is sufficient to stop the simulation if V/ > 0.95 or V/ < 0.05, respectively, for all units i.

6
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(a) Circuit level model of network with stable equilibrium states

in which kout of n units are on(_ = 1) and k - nunits

are off (Vi = 0).

(b) A more abstract repre-

sentation of same net-

work.

Figure 3. Two architectural representations of a network.

the specification of initial values for ui, which can be regarded as another set of inputs to
the network in addition to the external currents Ii. Because of the symmetric connectivity and

identical values of all weights and of all Ii, the network has an unstable equilibrium point ("saddle

point") at u i = 0 for all units i, which is equivalent to V/= 0.5 for all i. Thus, an initialization

with ui = 0 for all i would result in no "movement" at all and would prevent the convergence
of the network to any of the stable equilibrium points. Furthermore, an initialization with the

same constant value (not necessarily 0) for all ui would result in a movement to the unstable

equilibrium point ui = 0 for all i. This characteristic might be visualized by imagining the three-
dimensional surface of a "saddle" with the one special curve that has a gradient pointing exactly

to the (unstable) center of the saddle. (See appendix B for an illustration.)

If the initial inputs ui do not have all the same values, then those k units with the initially

largest values of ui (and hence of V/) suppress the other units more strongly, are less suppressed

by the other units, and thus "grow even stronger" and eventually win the competition. In the
n-dimensional state space spawned by the ui, this amounts to a convergence from an initial

point to the closest equilibrium point. These networks are also called k-winner-take-all networks
because only the k initially strongest units converge to an on state and all other units are reduced

to an off state. This characteristic can be used for contrast enhancement in signal processing

applications (e.g., vision), and networks that use these or similar principles of competition and

lateral inhibition can be found in different artificial as well as biological neural networks. For
k = 1, the network in figure 3 is simply called a winner-take-all network, and the special case of

n = 2 and k = 1 is equivalent to the well-known "Flip-Flop," which is a bistable memory with
one unit on and the other unit off or vice versa.

The network analyzed above realizes only the satisfaction of constraints and does not include

a cost function, which usually describes an optimization problem. The following sections

investigate two classical examples of optimization problems, the assignment problem and the

traveling salesman problem.

3.2. The Assignment Problem

The assignment problem (AP) has different variations depending on the definition of con-
straints and cost. The AP used for this example is a simple version, sometimes also called a

list-matching problem, with the following specification. Given two lists of elements and a cost

7



valuefor the pairingof any two elementsfrom theselists, theproblemis to find the particular
one-to-oneassignmentor matchbetweenthe elementsof thetwo lists that resultsin anoverall
minimumcost. In orderto distinguishclearlybetweenthe two lists, weusecapital letters to
describetheelementsof onelist (i.e.,X = A, B, C, etc.) and enumerate the elements of the other

list (i.e., i = 1, 2, 3, etc.). Additionally, we assume that the two lists contain the same number of
elements n. A one-to-one assignment means that each element of X has to be assigned to exactly

one element of i. The cost PXi for every possible assignment or pairing between X and i is given

for each problem instance. This generic problem description has many practical applications,
for example, the assignment of jobs i to processors X in a multiprocessor system by minimizing
the cost of the communication overhead.

The AP as specified above can be represented by a two-dimensional quadratic matrix of units

whose outputs are denoted by Vxi. Thus, we can define Vxi as a decision variable, with VXi : 1

meaning that the element X should be assigned to the element i, and Vxi -- 0 meaning that the

pairing between X and i should not be made. This way, a solution to the AP can be uniquely
encoded by the two-dimensional matrix of the outputs Vxi after all units converge to 0 or 1.

Note that n 2 units are required to represent an AP with n elements per list. The constraints

of the one-to-one assignment require that only one unit in each row and column converge to 1

and that all other units converge to 0. Thus, the outputs of the network after convergence
should produce a permutation matrix with exactly one unit on in each row and column. Figure 4

illustrates this representation by showing the cost matrix as the input for a particular problem

instance and the output of the network after convergence. In this example, the output matrix
determines the assignment of elements A to 7, B to 1, C to 6, etc.

x

B

C

D

E

F

G

i --I_

1 2 3

68 68 93

6 53 67

68 59 93

42 70

33 63

72 75

44 76

4 5 6 7

3852834 l_E: _

I 38 7 42

84 53 10 65

91 76 26 5 73

75 99 37 25 98

65 8 63 88 27

48 24 28 36 17

Cost matrix

B

D

E

F

G

Optimization network

1234567

r0000001

1000000

0000010

0000100

0100000

0O01000

0010000

Output matrix

Figure 4. Exemplary cost matrix for 7 x 7 assignment problem and corresponding output matrix generated by neural

network. Here, the solution encoded by output matrix is optimal with overall cost c of 165.

Mathematically, the constraints can be expressed as

EVxi= 1
X

(9a)

for all units i and as

E Vxi = 1 (95)
i

for all elements X with Vxi C (0, 1). Assuming that the constraints are satisfied, the overall

cost c of a particular solution becomes simply

c: 0o)
x {



This summation over the whole matrix includes only the cost for the n terms for which Vxi = 1,

which represents the overall cost of the assignment. In the example of figure 4, the overall cost
is c = 165, and it can be verified that this is actually the minimal cost of all possible solutions.

For the mapping of this problem formulation onto the optimization network, the relations

in equations (9) and (10) are included in a quadratic function with minima representing the

solutions of the problem. This is a generalization of the "winner-take-all" problem discussed
in the last section with the augmentation that the.AP requires a two-dimensional network and

includes a cost function. The energy function

)A B

EAp = _ V Vxi - 1 + --ff Vxi - 1

C
+3 E E Vxi¢1-Vx, +oEZ x,V ,

X i X i

(11)

used by Brandt et al. (1988) is such a quadratic function. The first two terms in equation (11)

have minima if the sum over all outputs equals 1 for each row and each column, respectively.

The third term has minima if all Vxi are either 0 or 1, and together with the first two terms, it

enforces the constraints according to equation (9). The fourth term in equation (11) is simply the

overall cost of a particular solution (eq. (10)) given that the constraints are met. Furthermore,
it is common to use constant factors A, B, C, and D (not to be confused with the row indices

A, B, C, and D of a list as in fig. 4) as additional parameters in equation (11). These parameters

have the effect of weighting the constraints and the cost function and allow a fine tuning of the

performance as will be seen later.

Equation (11) creates an energy landscape in n2-dimensional space with local minima

corresponding to all possible solutions to the problem, i.e., all permutation matrices. However,
unlike in the winner-take-all problem, the local minima now have different depths determined

by the cost of a particular solution. The energy minimum corresponding to the smallest cost

value (best solution) is called the global minimum.

The next step in mapping equation (11) onto an optimization network is the derivation of
the values for the connections and external inputs. First, we have to extend the notation of the

Liapunov function (eq. (4)) to two dimensions:

1

x i Y j x i

(12)

Now, TXi,Y j and Ixi can be derived by setting E in equation (12) equal to EAp in equation (11).
The algebraic calculations are analogous to the case of the winner-take-all problem, albeit

somewhat more complex. An expansion of equation (11) results in

EAp =
A B C
3EEEv ,Vxj+ 3EE%

X i j X i Y X i

( )n-EEVxi A+B--ff-Dpxi +_(A+B)
X i

(13)

9



The constant scaling term _ (A + B) can be omitted because the absolute value of EAp is

not important. By using the Kronecker symbol _ij (where 5ij = 1 for i = j, but 0 otherwise),
we can express EAp as

_ _XY + -_ 5ij -- -_ _XYSij

x i Y j

- Z _Vxi ( A + B- C - DpXi)2 (14)
X i

By comparing equations (12) and (14) it can be seen that E = EAp if

Txi,Y j = -ASxy - BcSij + C6xY6ij ]

Ixi=A+ B C
- -_ - Dpx i

(15)

Figure 5 presents a sketch of the resulting network architecture. We can distinguish between
three different types of connections: (1) lateral inhibitory connections between different units

within the same row (X -- Y, i _ j) with the value Txi,x j = -A, (2) lateral inhibitory connec-
tions between different units within the same column (X _ Y, i = j) with the value Txi,Y i --- -B,

and (3) feedback from a unit to itself (X = Y, i = j) with the value TXi,X i = -A - B + C. The
external current includes a constant term A + B - (C/2) as well as the problem-specific cost

values Pxi.

C
Nine external currents (Iy; = A + B - _ - DPxi )

are shown by arr_/

Feedback

from a unit

to itself

(Txi,x i = -A - B + C)

Lateral

inhibitory
connections
within a

column

(Txi,Y i = -B) __

Lateral inhibitory connections

within a row (Tvi,_,Xj = -A)

Figure 5. Schematic architecture of two-dimensional neural network with connectivity required to solve assignment

problem.

The operation of the network can be simulated by solving the equations of motion (eq. (2)),

which take the general form

duxi uxi + _ Z TXi,yjVyj + IXi (16)
Cxi dt Rxi y j

10



for a two-dimensionalnetwork.
motionfor the AP become

Cx/

With the specific values from equation (15), the equations of

duxi uXi
-- A E Vxj - B E Vyi + CVxi

dt Rxi
j Y

C
+ A + B- -- - Dpxi

2
(17)

These equations represent a system of nonlinear ordinary differential equations (ODE's) that

can be solved by any of the standard numerical methods. (See, e.g., Press et al. 1986.) Because
the system in equation (17) proved to be numerically quite robust, the simple Euler method is

sufficient as long as the stepsize At is small enough. The values for all the parameters used in

our simulations are given in section 4 where the performance of the network is discussed.

Solving equation (17) requires the specification of initial values for all values of uxi. Unlike

the winner-take-all network, the AP network in figure 5 does not have an unstable equilibrium

point (saddle point) at uxi = 0 because the different cost values Pxi encoded in the current Ixi
break the symmetry and the network converges from uxi = 0 to one of the stable states. Since

we do not assume any prior knowledge of the desired solution, the initialization at uXi : 0

represents an unbiased choice because it does not favor any of the stable states.

Clearly, the goal in operating the AP network is the convergence from an initial state to

the global minimum rather than to some local minimum. Unfortunately, this can be neither

guaranteed nor predicted because of the complexity of the nonlinear dynamics. Each equilibrium
point has a basin of attraction which reflects the shape of the local minimum of the energy

function in the high-dimensional state space. The basins of attraction are determined by the

connections, the current Ixi, and the shape of the transfer function V/= f(ui). For the winner-
take-all network, all stable states have identical basins of attraction, and the final state after

convergence is solely determined by the initial value. The AP network has different basins of

attraction because of the different cost values Pxi associated with the stable states representing
a solution.

The parameters A, B, C, and D can be used to shape the basins of attractions and thus

influence the convergence, but there is no theory that could prescribe specific values to achieve
a desired result. Thus, suitable values for the parameters A, B, C, and D as well as for

the gain and offset of the transfer function have to be found experimentally. It is relatively
easy to find an optimal set of parameters for one particular problem instance. However, the

same parameters might perform poorly for a different problem with a new cost function that

determines a different shape of the basins of attraction. Therefore, it is necessary to find a set

of parameters that performs well for a variety of problem instances. This experimental process
of adjusting the parameters to optimize the performance requires a number of test cases for

which the best solution is known. These questions concerning the performance assessment are
discussed in section 4.

3.3. The Traveling Salesman Problem

The traveling salesman problem (TSP) was the first example chosen by Hop field and Tank

(1985) to demonstrate how a neural network could be used to solve optimization problems. The

task of the traveling salesman is to visit n cities in a closed tour in such a way that the overall
length of the tour is minimal. Each city can be visited only once, and the distance between

any two cities is given. The TSP is a classical, NP-complete optimization problem (Garey and

Johnson 1979) for which no algorithm exists that could find a (global) solution in polynomial
time. Hopfield and Tank's TSP example achieved such prominence because it was one of the first
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examplesof a neuralnetworksolvinga problemthat is intractablefor conventionalcomputers.
However,aswewill discusslater, the TSP wasmeantand shouldbe regardedasan example

only, and it does not suggest that a general method has been discovered that solves NP-complete
optimization problems.

The problem representation for the TSP is similar to the AP and requires a two-dimensional

network with outputs Vxi. The difference is that the first index (X) now denotes a city, and the
second index (i) describes the order in which a city is visited along the tour. The representation

of a problem with n cities requires a quadratic matrix of n 2 units whose outputs Vxi should

converge to binary values. We define Vxi = 1 as the decision that city X should be on the
ith position of the tour. Conversely, Vxi = 0 determines that city X should not be on the ith

position. With this definition, a tour can be encoded and the problem can be solved as illustrated

in figure 6. First, the distances dxy between any two cities X and Y have to be derived from

the city locations, which are randomly distributed on a unit square in the example in figure 6.

The distance matrix is then provided to the optimization network whose outputs converge to
values that allow the decoding of a tour. In figure 6, for example, the output matrix determines

that city C is in the first position of the tour, city F in the second position, etc., which prescribes
the tour C-F-D-G-E-B-A-C.

Cities Y _ Position i

i / il B C D E F G\ City i l 2 3 4 5 6

A 304882,64457 i A 0000 lB . 0 .49.54.35.27.27 _ B 0 0 0 0 1 0

C /.48.49 0.73.84.30.60 I @_ 7 @¢_ C 1 0 0 0 0 0 0

D .82.54.73 0 .60.46.28 1 D 0 0 1 0 0 0 0

E .56.35.84.60 0 .58.37 / g 0 0 0 0 I 0 0

F .44.27.30.46.58 0 .30 ] F 0 1 0 0 0 0 0

G .57.27.60.28.37.30 0 ] G 0 0 0 1 0 0 0

Distance matrix (cost) Optimization network Output matrix

1 City map L_ )

(9 ®

Generate distances dxy Decode tour

from city distribution

E
D

G

A

C

0 I

Figure 6. Example of traveling salesman problem (TSP) and representation of a tour by the outputs of the

optimization network after solving the problem. The resulting tour has a length of 2.54.

Since the TSP requires a closed tour, it actually does not matter where the tour starts or

in which direction the tour is traversed. Thus, the output matrix in figure 6 is not a unique

description of the tour and shifting the columns to the left or to the right leads to the same
result. In general, the problem representation has a 2n-fold degeneracy because n matrices exist
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for eachof the twodirectionsof traversalthat encodethe sametour. Althoughthis degeneracy
might seemundesirable,a morecompactor uniquerepresentationisnot knownin this context.
Furthermore,theredundancyintroducedby this degeneracyhasinterestingimplicationsfor the
fault toleranceof thenetwork,aswill beshownin section5.

TherequirementoftheTSPthat eachcityhasto bevisitedexactlyoncecanberephrasedsuch
that eachcity canbe in onlyonepositionof thetour andeachpositioncanbeoccupiedby only
onecity. Thus,theconstraintsaremet if theoutputsof thenetworkconvergeto apermutation
matrix with only one1 in eachrowandcolumn.This meansthat the mathematicalexpression
of the constraintsin the form of a quadraticfunction is identicalto the onederivedfor the
assignmentproblem.Thecostfunctionfor theTSP is theoveralllengthI of a tour that should
be minimized. The tour length can be expressed as (Hopfield and Tank 1985)

1 E E E dxyVxi (VY,i+l + Vy, i-1) (18)
i x Y

with dxy denoting the distance between city'X and city Y (dxx = 0). The subscripts i

describing the position are defined modulo n (i.e., Vy, i+n = Vy, i) in order to express the fact
that a city in position n of the tour is adjacent to the city in position 1. Given that the constraints

are met, the triple sum in equation (18) actually results in twice the overall tour length and

is thus divided by 2. Equation (18) can be illustrated by the example in figure 6. Starting at

position i = 1, the first term is _(dcF -4-dCA ), the second term for i = 2 becomes _(dFD + dFC),
etc. Thus, the summation includes the distances between a city in a given position and both

its neighbors on the tour. The reason for including both Vy, i+ 1 and Vy, i-1 in the summation
in equation (18) is that it leads to symmetric connection values in the optimization network, as
we will see below. This symmetry is a necessary condition for the stability of the network. (See

appendix B.)

Except for the different cost function, the energy function for the TSP is identical to that of

the AP and can be written as (Brandt et al. 1988)

A B
ETSP1 = -2 E VXi- 1 + -_ Vxi-

X

D ex,.V , (vy,,+l+vy,,_l)+-ff
x Y i

2 C1 4--2_X_-_Vxi(1-Vxi)i

(19)

The mapping of equation (19) onto the Liapunov function (eq. (12)) of the network requires
calculations similar to those shown for the AP in the last section and results in the following

network parameters:

Txi,Y jlXi= A + B- C--=-ASxy - BSij -4-CSxYSij - Ddxy (5j,i+1 -t- 5j,i-1) }
2

(20)

The principal difference between the TSP connectivity in equation (20) and the AP connectivity

in equation (15) is that the TSP cost function is encoded by the connections Txi,Yj and not by
the external current Ixi. The architecture of the TSP network is identical to the AP network
as illustrated in figure 5, except that the TSP network has a constant Ixi and the additional

connections Txi,Yj = -Ddxy(Sj,i+l + 5j,i-1). These connections that encode the cost function
describe a link between a unit Xi and its neighbors in the two adjacent columns Y, i+1 and
Y, i-1 with the strength -Ddxy. Because of the modulo n definition of the position index,
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theconnectionswrap aroundthenetworkby connectingthe first andthenth columns. A small
distance between the cities X and Y, for example, is reflected by a weak inhibition between the

units Xi, Y, i+1, and Y, i-1 which establish a link between X and Y in the tour if Vxi -- 1 and

Vy, i+ 1 = I, or Vxi -- 1 and Vy, i-1 = 1, respectively. Thus, two cities with a large distance lead
to a strong inhibition between all units that could establish a link between these cities in the final

tour. This competition, which favors short links to minimize the cost and leads to convergence
to an overall valid tour to satisfy the constraints, occurs simultaneously in the network through
the interaction of all units.

The equations of motion that describe the dynamics of the TSP network are

Cxi
duxi

dt
A Vxj - vw + CVx 

Rxi
j Y

- D E dxy (Vy,,+I + Vy,,-I) + A + B - C2
Y

(21)

The parameters A, B, C, and D, together with the gain and the offset of the transfer function,
can be used to fine tune the performance by shaping the basins of attraction as discussed in the

previous section. Initial values for the uxi have to be specified in order to solve equation (21)

numerically. The value uxi = 0 for all Xi represents an unbiased choice, but unfortunately the
TSP equation (21) has an unstable equilibrium (saddle) point at uxi = 0. This is caused by

the symmetry of the connections and, unlike the AP, by an identical external current for each

unit. Unfortunately, any nonuniform initialization implies a bias toward a particular solution.
Since we do not assume any prior knowledge that could be used in the form of a bias, the only

solution is to keep this bias as small as possible. Thus, we use initial values uxi + 5, where 5 is a
random variable that is uniformly distributed in the interval -10 -6 < 5 < +10 -6. Although the

random bias is fairly small, we can observe different solutions for different random initializations.

This complicates the performance assessment because it requires more simulations to derive an

average performance over different random initializations.

Originally, Hopfield and Tank (1985) proposed a different energy function for the TSP that

used an alternative formulation to enforce the constraints. Their original TSP energy function
was

2

)
X i j#i i X Y#X "

+7
X Y i

(22)

The first two terms in equation (22) have a minimum (besides the trivial case Vxi = 0 for all Xi)

if all cross products VxiVxj for i _ j within a row vanish and VxiVyi for X _ Y within a column
vanish. This is the case if there is only one nonzero output in each row and column. The third

term in equation (22) has a minimum if the sum over all outputs equals n. Together with the first

two terms, this determines an overall minimum if the outputs represent a permutation matrix.

The mapping of equation (22) onto the Liapunov function (eq. 12)) results in the values

Txi,Y j = -ASxy - BSij + (A + B) 5xy 5ij - C - Ddxy (Sj,i+1 + 5j,i-1)

Ixi = nC J
(23)
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andin the correspondingequationsof motion

Cxi
duxi

dt
Rxi j#i Y#X Y j

-- D Z dxy (Vy, i+l + Vy, i-1) + Cn
Y

(24)

The main difference between Hopfield and Tank's original formulation (eqs. (22)-(24)) and

the modification (eqs. (19) (21)) is the global inhibition term -C in Hopfield and Tank's

equation (23) as well as an external current term that depends on the problem size n. Global
inhibition means that there is an inhibitory connection from every output to every other input

with a connection strength C in addition to the lateral inhibition within each row and column

of strength A and B, respectively. This global connectivity results from the global formulation

in equation (22), which states that the sum of all outputs should be equal to n. In contrast, the
energy function in equation (19) uses only local rules when it requires that each output should

converge to either 0 or 1.

Although both approaches seem to be equivalent in the sense that both enforce the conver-
gence to a permutation matrix while using an identical cost function, their performance turns

out to be considerably different. In trying to recreate Hopfield and Tank's original results, many

people have reported poor results; that is, either the network failed completely to converge to a

valid tour (permutation matrix) or the solution was clearly far from the global optimum. (See
Wilson and Pawley 1988; Van den Bout and Miller 1988; Hedge, Sweet, and Levy 1988.) These

problems do not occur when the alternative formulation of the energy function in equation (19)

is used (Brandt et al. 1988). However, the performance still depends strongly on the parameter

values, on the initial values, and on the cost function of the underlying city distribution.

Before we address the difficulties of a quantitative performance assessment in the next section,
we want to illustrate the behavior of the network in solving two 10-city distributions. For these

examples, we used Brandt's equations (eqs. (19)-(21)) with the parameters A = B = 2, C = 4,

D = I, A = 2.5, and Us = 0.5. The equations of motion are solved by Euler's method with

At = 0.1. The values for Ci and Ri are normalized to 1 without loss of generality. Figure 7

shows the two 10-city examples and the network in its initial state (Vxi)t=O = 0.5 + 5 with 5 as
a small random bias (-10 .6 < 5 < +10-6). The output value Vxi of each neuron is represented

in figure 7 by the size of the black square. This becomes more apparent in figures 8 and 9 which

show the outputs of the network after convergence together with the corresponding tours.

An important point to emphasize is that the different solutions in figures 8 and 9 are caused

only by different initial values and not by any other parameter variations. This illustrates

the strong impact of the (unavoidable) random bias, even if it is very small. The examples
also illustrate that the solutions of the network with the exception of figure 9(c) are indeed

suboptimal. However, the subjective (visual) impression of a bad tour is not always reflected

by a large tour length. An obviously poor solution with a twist as in figure 8(c) has a length
of 2.83, which is quite close to the global optimum of 2.71. As we will discuss later, it is possible

to improve the performance for specific cases by fine tuning the parameters, but this can lead to

invalid answers in other cases. The parameters used here are not optimized for these examples

but produce consistently valid solutions according to the results of the next section.

Finally, figure 10 shows the time evolution of a network in different snapshots during the
convergence. Because of the mutual inhibition, the outputs quickly decrease from their initial

values of 0.5 + 5 to very small values. It can be seen in figure 10(a) that the first increase

in activity occurs at locations that correspond to the "city clusters" C-D-H and A-E-I-J. This
result occurs because the small distances between the cities within each cluster generate less
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Figure 7. Initializations of network before solving TSP and two examples of 10-city problems with cities randomly

distributed on a unit square.

inhibition between the units at the corresponding locations. During the convergence of the
network, multiple choices are considered simultaneously before the network eventually locks into

a particular solution. Figure 10 gives an intuitive feeling for the meaning of the term parallel

distributed processing that is used by some researchers as a synonym for neural computing

(Rumelhart, McClelland, and PDP Research Group 1986).

4. Performance Assessment

The performance assessment would not be an issue if the network simply found the global
solution all the time. In fact, this would imply a solution to the NP-completeness problem.

However, we have already seen that the network converges to local minima and usually produces

good but suboptimal solutions. Then the question becomes how good is good? and the need for

a performance measure arises. One obvious measure of performance is, of course, the resulting
cost value after convergence, given that the network converged to a valid solution. For the TSP,

this is simply the distance of the tour, and the smaller the distance the better the network

performs. Unfortunately, the performance of a given network varies considerably for different

problem instances (data sets), for different problem sizes, for different network parameters,
and, in the case of the TSP, also for different initializations of the network. This variation
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Figure 8. Different solutions of 10-city problem in figure 7(a) after different initializations of network.
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Figure 9. Different solutions of 10-city problem in figure 7(b) after different initializations of network.
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Figure 10. Time evolution of output values of network solving 10-city problem of figure 7(b). Note that solution is

identical to figure 9(a) although it is encoded by a different output matrix.

impedes a meaningful, general performance assessment if only one or two example problems are

considered, because it is always possible to fine tune the network parameters for a particular

problem instance.
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Therefore,it is necessaryto generatea representativenumberof examplesthat allow a
statisticallymeaningfulstatementto be madeabout the average performance. Furthermore,
some reference frame is needed for the comparison of the network results because just the average

over the cost values is generally not sufficient. For example, the average of the tour lengths of
100 different TSP city distributions is not significant unless the problem size is constant and

the statistical distribution of the input data (city coordinates) is known. The simplest reference
for a comparison is the average cost value of a random guess, that is, the average or expected

value of the distribution of all possible answers for a particular problem instance. A performance

assessment based on the estimated distribution has led to statements in the literature that, for
example, a solution is approximately among the 108 best out of 4.4 × 103o possible solutions

(Hopfield and Tank 1985), or that 92 percent of the solutions are among the best 0.01 percent of

all solutions (Tagliarini and Page 1987). Although this gives some impression of the performance,
it can hardly be considered a practical measurement.

The solution needed is a performance measure that can answer the following questions:

1. What is the effect of a parameter variation or a modification of the energy function on the
performance?

2. How good is the solution with respect to the global optimum or (the best known answer)?

3. How does the performance change with problem size?

4. With respect to fault tolerance, how does the performance degrade under the presence of
(simulated) faults?

5. What is the performance difference of two networks solving two different problems; that
is, are there problems that are "easier" for the network to solve?

Our approach to the performance assessment is based on the fact that the distribution of

all possible answers for every instance of an optimization problem can be characterized by two

values, the global optimum (minimum cost) Cop t and the average cost value Cav. With c denoting

the cost value of a given result derived by the network, the relation between c, Copt, and Car can
be used as a performance measure. By mapping those absolute values onto a normalized scale
as illustrated in figure 11, we define the solution quality q as

Cav -- C
q - (25)

Car -- Copt

Thus, the solution quality has a value q = 1 if c = Copt and q = 0 if c = Cav, with 0 < q < 1 for

Cav > c > Copt.

Obviously, the calculation of q requires the knowledge of the two reference values Copt and
Car for each problem instance (e.g., for each city distribution of the TSP). Obtaining values for
Cav is usually no problem since it requires only a sufficient number of random trials. In case

of the TSP, for example, a random but valid tour is generated repeatedly and the resulting

tour lengths are averaged to obtain Cav. The fact that we have to know the global optimum

Copt appears to be a paradox at first glance, and one might ask why we would use an ANN
to solve a problem for which the best possible solution is already known. The answer is, of

course, that we want to test the network by using well-known model problems, and for such

a test it is reasonable to compare the results of a new method (i.e., ANN's) with the results
of the best existing method. In fact, in almost all cases, where ANN's have been applied to

optimization problems, there are conventional algorithms readily available to provide values for

Cop t. For NP-complete optimization problems like the TSP, for which the global optimum is

generally unknown, the best available heuristic method like the Lin-Kernighan algorithm can be

used as a reference. (See Lin and Kernighan 1973.) If Copt is not the global optimum and if the
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Figure 11. Definition of solution quality q by mapping absolute values of c, Copt, and Cav onto normalized scale.

network happens to generate a better answer, then the event c < Copt is reflected by a solution
quality q > 1. Conversely, the value for q becomes negative if the solution of the network is
worse than the random average (c > Cav). Thus, the normalized solution quality is independent

of a particular problem instance and of the problem size.

In the following discussion we will demonstrate the use of the defined solution quality to

assess and compare the performance of the two model problems, the TSP and the AP. In order

to get statistically relevant results for the TSP, we generated a test set containing 10 different

city distributions for each problem size (n = 10, 20, and 30) and 5 different distributions for
n = 50 and 100. Each city distribution was generated by placing the cities randomly on a unit

square according to a uniform probability distribution. The values for Cav were obtained by
averaging over 105 random trials for each city distribution. The Lin-Kernighan (1973) algorithm

was used to generate five answers for each city distribution, and the best result was chosen as Copt.

After obtaining the values for Car and Copt for each city distribution, it is possible to calculate
the solution quality q according to equation (25) after each simulation run of the network. Since
the network performance varies considerably for different random initializations, 10 different

initializations were used for each city distribution of n = 10 to 50, and 5 initiaIizations for

n = 100. Thus, a single sweep through the test set requires 375 simulation runs, and the value

of q was calculated after each run. The average values of q are shown in table 1 for different
approaches and problem sizes.

The possibility also exists that the network will not converge at all to a valid solution because
it has gotten stuck in a local minimum (spurious attractor) that does not correspond to a

permutation matrix. Since this event is not reflected by the solution quality, we also show in

table 1 the proportion of runs with valid solutions. The average value for q includes only runs
that produced valid soIutions. In an attempt to recreate Hopfield and Tank's (1985) original

results, we performed a run of the test set using their original equations (eqs. (22)-(24)) with

the parameters A = B = 500, C = 200, D = 500, _ = 25, and us ----0 as described. Furthermore,

Hopfield and Tank used an additional constant term for the external current according to
Ixi = C(n + 5) = 200n + 1000, which effectively shifts the transfer function. They also used

the initialization (Vxi)t=o = (l/n) + 5, where 5 is a small random number.
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Table 1. TSP Values of Solution Quality (q) for Different Approaches and Problem Sizes

[Proportions of valid solutions are given in parentheses]

Different approaches

using TSP

Values of q for problem sizes (number of cities) of -
n=10 n=20 n=30 n=50 n= 100

Original method of Hopfield 0.905 0.903 0.851

and Tank (1985) .... (0.15) (0.11) (0.02) (0)
Modified method of Brandt 0.829 0.816 0.830 0.852 0.902

et al. (1988) ...... (1.00) (1.00) (1.00) (1.00) (I.00)

Different parameters of Brandt 0.936 0.926 0.923 0.913 0.927

et al. (1988) ...... (0.98) (0.97) (0.84) (0.58) (0.18)

The equations of motion (eq. (24)) were solved by Euler's method with time steps At between

10 -5 and 10 -6. A larger At can cause numerical errors and results that do not reflect the actual

behavior of the system. The first row in table 1 shows the results of our simulation that confirm

the reported difficulties (Wilson and Pawley 1988; Hedge, Sweet, and Levy 1988; Brandt et al.

1988) in using Hopfield and Tank's original equations. Even for n = 10 cities, only 15 percent

of the runs converged to a valid solution, and since none of the 50-city cases produced a valid

answer, we did not even attempt to solve a 100-city problem.

Although we experimented extensively with parameter variations, we did not find a set of

parameters that improves the performance significantly. However, it is possible to fine tune the

parameters for one particular city distribution to obtain quite impressive results. Unfortunately,

the same parameters usually produce invalid or poor results for other city distributions. This

characteristic has led to some confusion in the literature with performance claims based on

specific examples that were difficult to reproduce and were not valid in general. (See Wilson and

Pawley 1988.) This also demonstrates the importance of an average performance assessment

over many examples. Since Hopfield and Tank's original equations (eqs. (22)-(24)) are not the

only way to express the problem, we tried different modifications (Protzel, Palumbo, and Arras

1989; Protzel 1990) and obtained the best results with the approach published by Brandt et at.

(1988) that is described in section 3.3. By using Brandt's energy equation (19) and his original

parameters A = B = 2, C = 4, D = 1, A = 2.5, and Us = 0.5, we obtained the results shown in

the second row of table 1. An additional difference of Brandt's approach is an initialization in the

center of the hypercubc with (Vxi)t=o = 0.5 + 5 and a random variable 5 uniformly distributed

in the range -10 -6 < 5 < 10 -6. Because of the lower gain and smaller values of the parameters,

we could use the value At = 0.1 to solve the equations of motion (eq. (21)).

As shown in the second row of table 1, this modified energy function produced consistently

valid tours across the full range of problem sizes. However, the average solution quality was lower

than the valid cases of Hopfield and Tank's results. We tried different parameters for Brandt's

energy equations to improve the quality. The results for A = B -- 5, C = 2, and D = 3 are listed

in the third row of table 1. The parameters for the transfer function and the initialization are

the same as in the previous case, except that we used At = 5 × 10 -3. We can see that the

average quality has indeed been improved, but at the price of occasional invalid answers whose

frequency increases with the problem size. There is a fundamental trade-off between obtaining

consistently valid (but sometimes poor) answers for a large number of different problem instances

and very good answers for a small number of instances. One obvious and extreme case of this

trade-off is setting D = 0, which cancels the cost function and reduces the problem to pure

constraint satisfaction. Then, we would always expect valid answers, but with an average quality

of q = 0. The underlying problem with the TSP is the quadratic cost function that maps the

22



problem-specific distance values multiplied by the parameter D onto the connections, where they

are added to the values that enforce the constraints as in equations (20) or (23). Qualitatively

speaking, large distance values in an extreme problem case or a large factor D might override

the connectivity values that enforce the constraints and thus interfere with the convergence to
a valid solution.

This problem does not occur with the assignment problem because the energy function for the

AP (Hopfield 1982) maps the problem-dependent cost values to the external current (eq. (15))
and not to the connection values. This is actually the only difference between the AP and the

TSP networks, as far as the architecture is concerned, and it makes a performance comparison

between the problems especially interesting. As before, we generated a test set of 10 problem
instances for each size of 10, 20, 30, 50, and 100 elements. The cost values were randomly

generated with a uniform distribution between 0 and 1. The AP as defined here is not an NP-
complete problem, and relatively simple and fast algorithms exist that find the global solution.

We used such a textbook algorithm (Syslo, Deo, and Kowalik 1983) to obtain values for Copt
and generated the average values Cav from 105 random solutions for each problem instance. The

first row of table 2 shows the simulation results for the parameters originally used by Brandt

et al. (1988) with the additional values A = 2.5, us = 0.5, At = 0.05, and the initialization

(uxi)t= 0 = 0. The other two rows show the effect of parameter modifications, and here the
values A = 25, Us = 0, and At = 5 x 10 -5 were used with the same initialization. As discussed

in section 3.2, no random bias in the initial values is required for the AP; in fact, the network

converges to the same solution despite some small random noise. This simplifies the performance
assessment considerably because we now need only one simulation run for each problem instance.

A comparison between tables 1 and 2 reveals a striking difference between the TSP and the

AP results. For the AP, none of the runs failed to converge to a valid tour, and moreover the

solution quality is excellent. For the parameter sets 2 and 3 in table 2, the network actually
found the global optimum in most cases or generated an answer extremely close to it. We can

conclude that the encoding of the cost values by the external current is the cause for the enormous

performance improvement because, unlike with the TSP, the cost values do not interfere with

the connection values that enforce the constraints. Thus, the distinction between a quadratic
and a linear cost function becomes an important classification that helps to identify problems

that are more suitable to an ANN implementation. The demonstrated ability to compare the

results of two different optimization problems proves the versatility of the solution quality as a

performance index and justifies the additional effort needed to obtain values for Copt and Car.

Table 2. AP Values of Solution Quality (q) for Different Parameters and Problem Sizes

[Proportions of valid solutions are given in parentheses]

Parameter

set

Values of q for problem sizes (number of elements) of--

Parameter n = 10 n = 20 n = 30 n -- 50 n = 100

1 A = B = 2, C = 2, D = 1 0.988 0.960 0.975 0.978 0.987

(1.0) (1.0) (1.0) (1.0) (1.0)

2 A = B = 200, C = 20, D = 50 1.0 0.999 0.999 0.998 0.998

(1.0) (1.0) (1.0) (1.0) (1.0)
3 A = B = 200, C = 3, D =- 50 1.0 0.999 1.0 1.0 0.999

(1.0) (1.0) (1.0) (1.0) (1.0)

Another aspect to the comparison between optimization networks and conventional algo-

rithms is the time it takes to solve a problem of a particular size. For example, it takes more

than 1 day of processing time on a VAX-11/780 (manufactured by Digital Equipment Corpo-
ration) to simulate the neural network solving a single 100-city problem. This is actually not
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surprisingbecausethesimulationinvolvesthenumericalsolutionof 10 40DE's for several thou-

sand iterations. However, the Lin-Kernighan algorithm provides an answer (usually better) in

about 3 minutes. Furthermore, 100 cities are not even considered an interesting problem size
for the TSP. Although an analog hardware implementation of the neural network might solve

the same problem in milliseconds, the need for a very large-scale integrated (VLSI) chip with
104 operational amplifiers to solve a 100-city TSP is truly questionable. Thus, we do not think

that large-scale, classical or NP-complete optimization problems are suitable applications for

optimization networks other than as examples or model problems. However, there are certain
small-scale, special-purpose, real-time control problems that could benefit from the key charac-

teristics of an ANN hardware implementation: e.g., speed, low weight and power consumption,
and built-in fault tolerance.

Thus, our actual objective is not to compete with conventional methods in solving classical

optimization problems but to investigate the fault tolerance of the network for special-purpose

applications. The above performance assessment is a prerequisite for this investigation. In the
next section, we still use the TSP and AP as model problems to demonstrate and to quantify

the performance degradation under the presence of simulated faults in the network. Section 6

then describes an application in which an optimization network controls the reconfiguration of
a multiprocessor system. There, the fault tolerance of the network is the decisive factor for the

operation of the system.

5. Fault Tolerance

Fault tolerance is a qualitative, general term defined as the ability of a system to perform its

function according to the specification in spite of the presence of faults in its subsystems. This
definition is very unspecific, and a system that is said to be fault tolerant does not necessarily

tolerate any number of faults of any kind in any of its subsystems. A specific way to quantify

fault tolerance is to determine the performance degradation in the presence of certain faults in
certain subsystems, given that some measure of performance exists.

Only relatively few studies in the literature focus explicitly on the fault tolerance of ANN's,
and the results are difficult to generalize because of the different models and objectives. For

example, Hinton and Shallice (1989) injected faults into a neural network trained to perform a

particular linguistic task. They showed that the performance degradation of the network bears
a qualitative resemblance to the degraded ability of neurological patients with a certain brain

disorder. Petsche and Dickinson (1990) used a special network architecture to investigate a

self-repair mechanism that automatically activates spare nodes (neurons) if one of the nodes

is inoperable, i.e., permanently inactive ("stuck at 0"). A study that is more closely related
to our approach was performed by Belfore and Johnson (1989) who also investigated the effect

of faults in an optimization network that solves the TSP. However, they used only a single
six-city distribution with single-node faults in their simulations, which is insufficient to draw

any statistically meaningful conclusion as we will show below.

According to figure 1, there are only two different components in a hardware implementation
of an optimization network: the neuron or active element in the form of an operational amplifier,

and passive interconnections in the form of resistors. In the following, we will first consider two

types of faults of the active elements that correspond to the highest failure rate. These are

commonly called stuck-at-1 or stuck-at-O faults and occur if the output of a unit (amplifier) is
permanently pulled to the highest potential or to the lowest (ground) potential, respectively.

The fault locations are randomly selected with one important exception: we do not allow two

stuck-at-1 faults to occur within the same row or column. The reason is that such an event

would automatically preclude a valid solution since the permutation matrix allows only one 1 in
each row and column. In simulating multiple faults, we study a succession of either stuck-at-1
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or stuck-at-0faults,but not a mixtureof both types.We usethe samelocationsfor stuck-at-1
andstuck-at-0faultsin orderto comparetheeffectof a differentfault type. Otherwise,it would
not bepossibleto tell whetherdifferentresultsarecausedby the differentlocationsor by the
differentfault types. This meansthat the aboveexceptionis alsovalid for stuck-at-0faults,
althoughtwo or morestuck-at-0faults in the samerowor columndo not necessarilyinterfere
with a validsolution.

Beforewepresenttheresultsof our large-scalesimulations,wewant to illustratethe impact
of stuck-at-1faults for severalexamples.Figures12and 13usethe same10-cityTSPexamples
fromsection3.3to showthe effectof 4 stuck-at-1faultssimultaneouslypresentin the network.
It canbeseenthat thenetworksstill convergeto asolution;however,theresultingtour isclearly
worsethan in the fault-freecasesof figures8 and9. In orderto understandtheseresults,it is
necessaryto recallthe definitionof a fault in this context.Sinceweinterpretthe neuronoutput
asa decisionaboutthepositionof a city onatour, astuck-at-1fault representssuchadecision
and therebypredeterminesa part of the overalltour. Becauseof the degeneracyof the TSP
problemrepresentation,a singlestuck-at-1fault doesnot constrainthe networkat all sincethe
absolutepositionof acity doesnotmatter. Theeffectof twosimultaneousfaultsis immediately
obviousif the two faultsoccurin adjacentcolumns.Asshownin figures12(a)and 13(a),such
aneventpredeterminesa link betweentwo citiesbecausethe citiesarein successivepositions
on the tour. Figures12(b)and 13(b)showhowthis imposedlink affectsthe overalltour.

Surprisingly,thispredeterminationofpartsof atourbytheinjectedfaultsdoesnotnecessarily
leadto a performancedegradation.Sincethe networkusuallyfindsa suboptimalsolutionin
thefault-freecase,it is conceivablethat a lucky combinationof fault locationsleadsto a tour
that is actuallybetter than onewithout any faults. Althoughtheseeventsarerare, wecould
observeoccasionalimprovementsunderthe presenceof multiple faults. Stuck-at-0faultsplaya
lessprominentrolebecausethey onlypreclude a city from being in a certain position instead of

predetermining it. Thus, the network has even more ways to "work around" those faults, and

we would expect a minimal impact from even multiple stuck-at-0 faults.

Figure 14 shows the effect of injected stuck-at-1 faults on a network solving the assignment

problem. The parameters used for this example are those listed in table 2 (in parameter set 2).
The solution shown in figure 14(a) represents the global optimum. Thus, if the best answer is
derived under fault-free conditions, any fault can only decrease the performance. Because the

AP representation does not have the degeneracy like the TSP, even a single stuck-at-1 fault
precludes a convergence to the global solution. Figures 14(b)-(f) illustrate how the multiple-

fault locations marked by the shaded squares become part of the solutions and how the network

converges to accommodate these constraints.

We analyzed the network solutions in figures 14(b)-(f) by using our conventional algorithm

and by taking the faults into account as additional constraints to the problem. Interestingly,
the network arrived at the same results, which means that it still found the new global

optimum under these fault conditions. Thus, we could define a conditional performance measure

by viewing the faults as constraints to the problem and assessing the network performance

accordingly. Although we can see the obviously unavoidable performance degradation in absolute
terms, the conditional performance of the AP network is still optimal. As with the TSP,

stuck-at-0 faults preclude a particular solution and have no effect at all unless the fault location
coincides with an active unit that is part of the solution; in this case, the network treats the

fault as an additional constraint and converges to the best possible solution.

Although the above examples provide some (qualitative) insight into the fault-tolerance

characteristics, it is still necessary to substantiate this impression by large-scale simulations
in order to obtain more rigorous results. We used the test set of problem instances as defined

in the last section and the same parameters that correspond to the results in the second row
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Figure 12. Solution of 10-city problem in figures 7(a) and 8 by network with 4 stuck-at-1 faults (tour length

of 3.27). Fault locations are visible during initialization in part (a). Note that the two faults in adjacent

columns predetermine a link between cities B and D.

of tables 1 and 2. Only these parameter values were used for the TSP because we regard

the consistent convergence to a valid solution in the fault-free case as a prerequisite for any

fault-injection experiments. Figure 15 shows the results for different problem sizes. The results
confirm our conjecture that stuck-at-0 faults have no effect for the AP and practically no effect

for the TSP. In case of the TSP, the injected faults override the random initialization and the

network converges without or independent of any initial bias to the same solution. Stuck-at-1

faults result in an almost linear performance degradation for the AP, whereas the redundancy
of the TSP representation is reflected in a relatively slower performance decrease as the number

of faults increases. When the number of stuck-at-1 faults approaches the number of cities or

elements, the performance for both the TSP and the AP approaches zero as in figure 15(a),
which corresponds to the random average. This is because the randomly selected fault locations

eventually predetermine a random tour. Most importantly, none of our simulations failed to
converge to a valid tour because of one or more injected faults.

In another experiment, we studied the effect of connection faults on the performance of an

optimization network. Although the failure rate of a simple resistive connection is orders of
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Figure 13. Solution of 10-city problem in figures 7(b) and 9 by network with 4 stuck-at-1 faults (tour length

of 3.77). Fault locations are visible during initialization in part (a). Note that the two faults in adjacent

columns predetermine a link between cities B and D.

magnitude less than that of an operational amplifier, the large number of connections (e.g.,

2n 3- 2n 2 connections for an n-element AP compared with n 2 neurons) increases the overall

probability of such a fault. The failure of a connection with the resistance R leads either to a

short circuit (R = 0) or to an open connection (R = co). Because the failure rate of a connection
short circuit is far less than the rate of an open connection, we simulated only the latter fault

type. In order to limit the number of required simulations, we used only a network solving the
AP for this experiment because this network exhibited the best performance and greatest fault

tolerance in our previous studies.

Figure 16 shows the resulting performance degra_lation of an ANN solving a 10-element AP
for up to 50 simultaneous open connections. The parameters for the AP network are the same

as in the previous fault-injection runs. The locations for the connection faults were randomly

selected. For each fault scenario we ran 50 different problem instances, and figures 16(a) and (b)

show the average, worst, and best performance for the two different values of the parameter
D = 50 and D = 120. The parameter D is a factor multiplied by the cost values according to
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(d) Three stuck-at-I; c = 310. (e) Four stuck-at-l; c = 361. (f) Five stuck-at-l; c = 381.

Figure 14. Effect of up to five multiple stuck-at-1 faults on network solving _ssignment problem of size n = 7. Cost

matrix is shown with circled elements indicating network solutions (neurons that converged to 1) and shaded

squares indicating fault locations. Note that parts (b)- (f) are still optimal solutions under additional constraints

imposed by faults.

equation (15), and a large value of D enforces solutions with better quality. This is reflected by

figure 16(b) which shows a better average quality as well as a lower variation in the quality of
the best and worst solutions compared with figure 16(a). This high variation in figure 16(a) is

again a reminder of how much the results depend on the chosen problem instance and that the
study of a single instance as in Belfore and Johnson (1989) can lead to grave misinterpretations.

Although the performance results suggest that a higher value of D would be desirable, there
is a trade-off shown in figure 16(c). Surprisingly, although none of the "stuck-at" faults led to

an invalid solution, we do observe invalid solutions for some problem instances after a certain

number of open connections. Figure 16(c) shows the percentage of valid solutions, and it can
be seen that a lower value of D tolerates more faults before the first case of an invalid solution

occurs. We have already seen this trade-off between consistently valid and high-quality solutions

in the fault-free cases of section 4, and it is very interesting to observe that the same effect plays

an important role with respect to the fault tolerance. Because an invalid solution is the worst
case and equivalent to a total system failure, a smaller valuO of D is obviously preferable for the

AP, especially since it does not affect the fault-free performance at least for the cases shown in

figures 16(a) and (b). However, for a value of D > 120, we could also observe some invalid results

4 Unfortunately, these qualitative recommendations about the relative size of parameter values do not necessarily hold

in general. Since no theory cxists to prescribe parameter values for optimization networks, optimal values have to be

determined experimentally for each problem.
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Figure 15. Performance degradation of an ANN solving traveling salesman problem (TSP) and assignment prob-

lem (AP) after injections of stuck faults for different problem sizes. Values are averages over 10 different problem

instances for each size with additionally 10 different random initializations each for the TSP.
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in the fault-freecase.This showsthat the "quality-validitytrade-off' is ageneralphenomenon
andthat connectionfaultsonly increasethe likelihoodof invalidsolutions.

In summary,wehavedemonstratedthat optimizationnetworksexhibit a surprisingdegree
of fault tolerancewhich is achievedwithout theexplicit useof redundantcomponents.Because
thefault-tolerancecharacteristicsareinseparablefromthe functionalcharacteristics,wecansay
that thefault toleranceof theANN isbuilt-in or inherent. However, when we make a statement

about the fault tolerance, we implicitly assume a failure condition or failure criterion of the

system, which is the threshold below which it can no longer perform its function according
to the specification. For example, consider the AP network that always generates the globM

optimum under fault-free conditions. If we specify this as the only acceptable performance level,

then any stuck-at-1 fault that causes the network to generate a good but suboptimal answer is

not acceptable and, with respect to this fault type, the network is not fault tolerant at all. On
the other hand, if we specify a solution quality of 0.8 as the acceptable performance threshold,
then an AP network of size n = 30 can tolerate (on the average) five stuck-at-1 faults and an even

larger number of stuck-at-0 or connection faults. Thus, the degree of fault tolerance depends on

our definition of acceptable performance.

The above discussion suggests an application domain for optimization networks where it is

not necessarily important to generate the best possible solution to an optimization problem, but

where a reasonably good answer has to be obtained fast and reliably. In the next section we

present an example of such an application with the network performing a critical real-time task

as a component of a fault-tolerant multiprocessor system.

6. Application of an ANN for the Task Allocation in a Distributed

Processing System

In the following discussion we will investigate the application of an optimization network in
the context of a distributed processing system that operates under hard real-time constraints

and has to meet very high reliability requirements. An example of such a system is the

Software-Implemented Fault-Tolerance (SIFT) computer used by NASA as an experimental

vehicle for fault-tolerant systems research (Palumbo and Butler 1986). The SIFT architecture
can accommodate up to eight processors in a fully distributed configuration with a point-to-

point communication link between every pair of processors. It can be used, for example, to
execute real-time flight control tasks as part of an aircraft control system. Because the system

operates in a distributed fashion, each processor executes a certain number of tasks according

to a predetermined task-to-processor allocation table.

The architecture achieves an extreme fault tolerance by its capability to detect and isolate

possible hardware faults. The isolation of a defective processor requires a reconfiguration of the

system and a reallocation of all tasks among the remaining processors. Thus, it is not the initial
task allocation but the reallocation of tasks after a processor failure that is time critical and has

to be performed by a highly reliable mechanism. The use of lookup tables for the reallocation

has the disadvantage that the number of combinations of tasks and processors is very large
for even moderately sized systems (Bannister and Trivedi 1988) and grows exponentially after

multiple processor failures. Although it is possible to use conventional algorithms to solve the

problem, these methods are often computationally too expensive because of the hard real-time
constraints and require an undesirable overhead because the algorithms have to be executed in

a distributed environment without any hierarchical control.

Since finding that the best allocation of tasks among the processors can be formulated as

a constrained optimization problem, we will demonstrate how an optimization network can be

used to solve this problem. The distributed system considered here resembles a simplified version
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of the SIFT computerandis basedon a modeldescribedby BannisterandTrivedi (1988)in
whicha conventionalheuristicalgorithmis usedto solvethis task allocationproblem.Wewill
later usethis algorithmasa benchmarkto assessthe ANN performance.The systemhasto
executen tasks and consists of m identical processors. Each task is replicated into r clones that

are executed by different processors and submitted to a majority voter in order to detect and

mask possible hardware failures. By assuming periodic real-time tasks for a typical flight control

system, the number of instructions per execution of task j, the frequency of execution, and the

execution rate of the processor determine the load that a certain task places on a processor,

which is called the utilization zj of task j. A particular allocation can be described by a variable

Y/j with V/j = i if task j is scheduled on processor i, and V/j = 0 otherwise. Then, the variable

Pi = _ zjVij represents the overall load or utilization of processor i under the allocation l_j.
j

The task allocation has to observe the constraint that each task must be executed by exactly
r different processors in order to allow a majority vote. Additionally, the allocation should

be done in a way that achieves at least an approximate load balancing among the processors.

A load balancing in a distributed processing system is obviously desirable, and Bannister and

Trivedi (1988) discuss several reasons why an imbalance potentially decreases the reliability
of the system. They also show that minimizing the sum of the squared processor utilizations

y_ p2 also minimizes the statistical variance of the Pi variables, which is a direct measure of the
i

imbalance. We further assume that there are enough processors to accommodate a (balanced)
assignment without capacity or scheduling violations.

The task allocation problem (TAP) is represented by an optimization network consisting of

a two-dimensional array of m × n neurons or elements in which the output l_j of an element is
bounded between 0 and 1 and corresponds to the hypothesis that task j is assigned to processor i.
Figure 17 illustrates this problem representation for an example in which 10 triplicated tasks

are allocated to 5 processors. In order to map the task allocation problem onto the network, it

has to be expressed as a function whose minima correspond to (local) solutions of the problem.
With the above definitions, we can define the following energy function

ETA P = -_ V/j - r

j=l

B m n

+ _- EE _j (1 - V/j)
i=1 j----1

+ -_ zj¼j
i=1 =1

(26)

The first term in equation (26) has a minimum if the constraint is met (i.e., each task is executed

by exactly r processors), the second term forces the outputs to converge to either 0 or 1, and

the third term represents the cost function to be minimized. Mapping equation (26) onto the
energy flmction (eq. (12)) yields the following values for the interconnections and the external
current

Tij,l k = --A_jk + B_il_jk - Dzjzk(Sil ]

Iij Ar B I (27)2

and the equations of motion

duij uij

Cij -_ = - Rij - A _ Ylj + BVij
l

- Dzj E zkVik + Ar - B_
2

k
(28)
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Figure 17. Example of allocation of tasks to processors generated by optimization network. Note that each task has

to be executed by exactly three different processors while an approximate load balancing of processors should be

achieved.

We used the parameter values A = 75, B = 5, and D = 350 as well as A = 25 and us = 0 for the

transfer function (eq. (1)). Although there are only three parameters, we used D as the third
parameter because we have previously associated D with the cost function of the problem. Our

simulations are performed for different data sets with task utilizations zj randomly generated
from a uniform distribution between 0.01 and_0.10. Because of the quadratic cost function in

equation (26), the cost values zj are part of the interconnections and the external current is
constant. Thus, this problem is similar to the TSP and requires a random initialization to

overcome the unstable equilibrium point at uij = 0. We used the initial values Y/j = 0.5 q-6
with small, uniform noise (-10 -7 < 6 < 10-7). The equations of motion (eq. (28)) were solved

by Euler's method with a step size At = 2 x 10 -5 and required an average of 5000 iterations to

converge.

At this point, we can simulate the network and successfully solve the TAP as shown in
figure 17 with a performance that is comparable to the TSP network, but this is not the actual

task in this application. What is required is a reallocation of tasks after a processor failure.

Therefore, the network has to be provided with the information about which processor has failed.

Furthermore, it has to implement this information as an additional constraint before solving the

problem. For example, the unavailability of a processor k can be represented by enforcing Vkj = 0
for all tasks j; that is, no tasks can be assigned to processor k. This additional constraint could

be implemented either by external currents of sufficient strength to inhibit all neurons in row k
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or by switches connecting the outputs of all neurons in row k to 0 (ground potential). Although
the latter method seems to be somewhat crude, it actually has the advantage that a possible

stuck-at-1 hardware fault of a neuron in that row is overridden by the external switch. Producing

this short circuit at the outputs is equivalent to our stuck-at-0 fault injections in the last section;
there we showed that the network indeed treats this condition as an additional constraint to the

optimization problem. Figure 18 illustrates the process of reallocation after a processor failure

by using the same example shown in figure 17.
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Figure 18. Example of reallocation of tasks after a processor failure. Optimization network generates new allocations

by observing the constraints and by approximately balancing the load of the processors.

The network is obviously a critical component of the system because a network failure would

prevent the reconfiguration of the system after a processor failure, which leads to a total system

failure. Thus, the fault tolerance of the ANN becomes a crucial characteristic. We tested the fault

tolerance again by simulating stuck-at-0 and stuck-at-1 faults in randomly selected locations.

Figure 19 illustrates the operation and convergence of the network for the example of a system

with m = 7 processors and n = 14 tasks where each task has to be executed by three different

processors (r = 3). Figure 19(a) shows the initialization of the (fault-free) network for a scenario

in which processor 4 has failed, which is reflected by an output value of zero for all neurons in

row 4. Figure 19(b) indicates the result after convergence with tasks 2, 3, and 6 assigned to

processor 1, tasks 3, 5, and 7 assigned to processor 2, etc. The load-balancing performance of

the ANN is also illustrated in figure 19(b) which lists the processor utilizations resulting from
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the ANN solution in comparison with a simple, heuristic reference algorithm (Bannister and

Trivedi 1988). As can be seen from the cost values listed at the bottom, which are the sum of

the squares of the processor utilizations, the ANN is outperformed by the algorithm althoug h
the difference of the values is only of the order of 1 percent. However, as we stated earlier, an

approximate load balancing is sufficient in this case as long as the solution can be obtained fast

and reliably.
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(b) Solution after convergence with resulting processor

utilizations in comparison to reference algorithm.
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(d) Solution after convergence under presence of injected
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Figure 19. Illustration of operation and convergence of network generating a task allocation after failure of processor 4

(m=7, n=14, andr=3).

The latter requirement is illustrated in figure 19(c), which shows the initialization of the

network for the same scenario, but now with eight faults simultaneously present in the network.
The fault locations of five stuck-at-1 and three stuck-at-0 faults are clearly recognizable after the

initialization. Figure 19(d) shows the results after convergence, and we can observe the same

phenomenon that the faults do not impair the convergence but act as additional constraints of

the problem. According to the cost value in figure 19(d), the performance is only slightly worse
than in the fault-free case.

Since the performance of the ANN varies considerably for different random initializations

and different input data, it is necessary to evaluate the average performance over a sufficient
number of problem instances in order to obtain a statistically relevant assessment. We simulated

a system with m = 8 processors and n = 24 triplicated tasks (r = 3), which requires a network of

192 neurons. Seven different test sets of random task utilizations were generated. The network

was simulated with seven different initializations for each test set. The solution quality q was

used to assess the performance where values for Copt were obtained from the heuristic algorithm
in Bannister and Trivedi (19883. Figure 20 demonstrates the performance degradation for up to
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eightinjectedstuck-at-0or stuck-at-1faults. Thenumberof processorsrefersto theremaining
numberof availableprocessorsin the system.For example,if the distributedsystemconsists
initially of eightprocessors,then m = 7 refers to the operation of tile network after a failure
of one processor with the neurons in the corresponding row switched to zero. Note that the

solution quality in figure 20 is plotted in the small range from 0.75 to 1.00, which magnifies
the variations. As expected, the performance is very similar to the TSP because both use a
quadratic cost function.

1.00 Processors 1.00 -

......... Six.95 Seven .95

Eight _-

.95 . '_ .95

,... -.......--
.8 .80

75 t i I I i i i i I .75
0 1 2 3 4 5 6 7 8 0

Number of injected faults

(a) Stuck-at-0 faults.

Processors

......... Six

Seven

Eight

"....." .... 0"" "_
'o"

I I I I I I I I

I 2 3 4 5 6 7 8

Number of injected faults

(b) Stuck-at-1 faults.

Figure 20. Performance degradation of ANN allocating n = 24 triplicated tasks (r = 3) to m = 8, 7, and 6

processors.

The results in figure 20 confirm the qualitative observation in figure 19 that the ANN
exhibits an extreme fault tolerance compared with conventional systems. Since the faults are

randomly located and act as additional constraints of the problem, it is possible that one or more
faults accidentally dictate a better solution than the network would have found without faults.

This explains the occasional performance increase after fault injection and the nonmonotonic

characteristic of the performance degradation. Of course, this is only possible because of the

suboptimal performance of the ANN in the fault-free case. It is also important to note that none

of the simulations converged to an invalid solution or to a solution that violates the capacity

constraint Pi < 1, although the latter was not explicitly enforced. An event that would lead to
an invalid solution can occur only if there are more than r stuck-at-1 faults in the same column,

thus assigning a task to more than r processors and violating the constraints. If the faults occur

at random locations and if the failure rate of a stuck-at-1 fault is known for a particular hardware

implementation, then this scenario can be used to estimate an upper bound for the reliability of
the ANN.

7. Concluding Remarks

The objective of our investigation was to explore the fault-tolerance characteristics of a

particular neural network type and to show how these networks might be used in certain critical
applications. First, we described the principle of operation of these networks and showed how

they can be used to solve optimization problems. The operation and the performance of the

network was first illustrated for two examples of classical optimization problems, the assignment

problem and the traveling salesman problem. With an analog hardware implementation of

the neural network in mind, the fault tolerance was simulated by subjecting the "neurons"
implemented as operational amplifiers to multiple "stuck-at-l" and "stuck-at-0" faults.
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Wehavedemonstratedthat the fault toleranceis an inherentcharacteristicof this type of
neuralnetworkandthat the injectedfaultsaretreatedby thenetworkasadditionalconstraints
to theproblem.Althoughconventionalsystemsoftenbreakdowncompletelyafterasinglefault,
thenetworkexhibitsagracefulperformancedegradationevenaftermultipleinjectedfaults. This
characteristiccanbeexploitedandafault-tolerantneuralnetworkintegratedonasingleanalog
verylargescaleintegrated(VLSI)chipmightperformacriticaltaskthat wouldotherwiserequire
a redundantmicroprocessorsystemwith speciallytestedsoftware.

Asanexampleofa promisingapplication,weusedtheneuralnetworkasa criticalcomponent
of a fault-tolerant, distributed processingsystem. The failure of a processorrequiresa
reconfigurationof thesystemandareallocationofall tasksamongtheremainingprocessors.This
taskallocationhasto observecertainconstraintsandshouldat leastapproximatelybalancethe
loadof theprocessors.Weshowedhowaneuralnetworkcansolvethisproblemanddemonstrated
therobustnessofthenetworkby injectingsimulatedfaults. Ourresultsindicatethat thenetwork
canindeedperformthis taskreliablyandthat evenmultiple faultsdonot impair the ability of
the networkto generatean answerwith only slightlydegradedperformance.The limit of the
fault toleranceof the networkis problemdependentand is determinedby certainscenariosof
multiple faults that wouldlead to a violation of the constraints,suchas,for example,more
thanthreestuck-at-1faultsin thesamecolumn.Suchfault combinationsareexplicitlyexcluded
in our fault-injectionexperimentssincethey wouldobviouslyprecludea valid solution. With
knownfailureratesandfaultsoccurringat randomlocations,theseworst-casescenarioscanbe
usedto estimateanupperboundfor the reliabilityof theneuralnetwork.

In summary,we think that applicationsexist for the type of neuralnetworkdescribedin
this paperthat cantakeadvantageof thespeed,lowweight,lowpowerconsumption,andfault
toleranceof futurehardwareimplementations.However,in mostcases,the actualperformance
of the networkdoesnot reachtheperformanceof the bestavailable,conventionaloptimization
algorithm. Thus,the neural networkapproachis bestsuitedto certainreal-timeapplications
that donot necessarilyrequiretheabsolutebestanswer,but whereit isnecessaryto generatean
approximateanswerfastandreliably.Thecharacteristicof a gracefulperformancedegradation
without additionalredundancyis especiallyinterestingfor long-termunmannedmissionswhere
componentfailureshaveto beexpectedbut norepairor maintenancecanbeprovided.

NASA Langley Research Center

Hampton, VA 23665-5225

February 11, 1992
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8. Appendix A

Equations of Motion

In thissectionwewill derivetheequationsthat governthedynamicalbehaviorof thenetwork
shownin figureA1(whichwaspresentedearlierasfig. 1). Thesymmetryof thenetworksimplifies
theanalysis,andit issufficientto determinetheequationsfor aparticular(but arbitrary) unit i.

Figure A2 shows an equivalent circuit diagram for such a unit i in which ideal voltage sources
represent the feedback from all other units including unit i itself. The nonlinear relationship

Vi = g(ui) between input and output of a unit can be expressed by the sigmoidal function as
described in section 2, but it is not required for the following analysis.

The simple circuit in figure A2 can be analyzed by applying Kirchhoff's current law

n

Z ij + [i = ir T i C

j=l

(A1)

and Kirchhoff's voltage law

(A2)
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Figure A1. Circuit diagram of optimization network according to Hopfield (1984). Note that negative feedback can

be realized by connecting positive conductances Tq to negative output -Vii of unit (not shown in this figure).

(This figure, which was presented earlier as fig. 1, is repeated here for the reader's convenience.)

Solving equation (A2) for ij and combining equations (A1) and (A2) results in

n

Z ( jvj - <jui) + Ii = + ic
j=l
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Figalre A2. Equivalent circuit diagram of network in figure A1 for one particular unit i.

By substituting the relations ir = ui/ri and iC = C(dui/dt) into equation (A3), it follows that

?2 n

dui ui
-- ui_ Tij + Z Tij Vj + Iici ? +

j=l j=l

(A4)

After some final rearrangement, we get the "equations of motion"

Ci = + _-_ Tij + _)-_ TijVj + Ii (A5)
j=l j=l

The parallel combination of the input resistance r i and all the conductances Tij connected to

unit i can be expressed as a single resistance Ri with

n

1 1
-- = - +  rij
Ri ri j=l

(A6)

The product of Ri and Ci is often referred to as the time constant Ti of the equivalent circuit

diagram in figure A2. An identical time constant for each unit i would require Ci -- C and

Ri = R for all units i. The latter condition might be difficult to achieve in practice if the
parallel combination of the weights in equation (A6) results in different values for each unit i.
In this case, each individual value for r i would have to be chosen in a way that compensates for

these variations.

Also of importance is that the time constant 7/describes the convergence of the input voltage
ui of unit i. Because of the potentially very high gain of the transfer function _ = g(ui), the

output _ might saturate very quickly. Thus, even if the input ui is still far from reaching its

equilibrium point, the output _ might already be saturated; and by observing only V/, it might

appear as if the circuit had converged in merely a fraction of its time constant Ti.
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9. Appendix B

The Energy Function

The stability of the neuralnetworkin figureA1 canbeprovenby consideringthe following
Liapunovor "energy"function:

1 1 _gv_g-1 (V) dVE = -_ E E TijViVj - E ViIi + E Rii (0)
i j i i

(B1)

With V/= g(ui) denoting the sigmoidal transfer function between input ui and output V/ of

element i, the third term in equation (B1) represents an integral over the inverse of this transfer
function. Two examples of sigmoidal transfer functions, their inverses, and values for the integral

are illustrated in figure B1. For example, with the transfer function

V/= _[1 + tanh(2Aui)]

and its inverse
1

ui = _[arctanh(2Vi - 1)]

the integral term in equation (B1) can be written as

1F 1 1F arctanh (2V - 1) dV(0)g-l(v) ev = XZ. .5 (B2)

The integral term in equation (B2) vanishes in the so-called high gain limit with )_ ---*oc.

As shown in figure Bl(a3), the value of the integral is zero at Vi = 0.5 and rises sharply as Is/
approaches either 0 or 1. For practical purposes with moderately high gain values _, the integral

term in equation (B2) can be neglected and plays a role only in establishing "energy walls" that

represent the borders of the hypercubc in V-space (0 < V/ < 1 for all units i).

Sketch A presents a network with two neurons mutually interconnected by negative feedback

(Tij < 0). This is the simplest possible case of an optimization network (n = 2) and actually
represents the bistable memory element known as Flip-Flop. This Flip-Flop is used to
demonstrate the shape of the energy function (eq. (B1)), which is shown in figure B2 for different

values of A. If the gain is too small (fig. B2(a)), then the integral term dominates as Vi approaches

0 or 1 and prevents the occurrence of minima at the corners of the space. Instead, the system
behaves like a linear system with only one stable equilibrium point at V_ = 0.5 (ui = 0). In

figure B2(b), two stable states with very shallow minima can be identified because of the higher
gain. Although the gain in figure B2(c) is still relatively small with )_ = 25, this case already

constitutes the high gain limit. It can be seen that the minima of the energy function are formed

where the descending energy surface meets the wall of the cube caused by the integral term in

equation (B2). Figure B2(c) also illustrates the unstable equilibrium point at _ = 0.5 (ui = 0).
An initialization of the system with identical values for all ui or 17/, respectively, leads to a

movement to the unstable point at the center.

In order to prove the stability of the network, it is necessary to show that the energy

function of equation (B1) is indeed a Liapunov function for the system. The time derivative of

equation (B1) can be calculated using the chain rule

dE OE dVi (B3)
d---(= E OVi. dt
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The following steps of the proof require that the condition Tij = Tji be met. Thus, assuming a

symmetric connectivity, equation (B3) can be written as

- - E T_jv_- I_+
• j

(B5)

The term in parentheses in equation (B5) is identical to the negative right-hand side of the

equations of motion of the network

dui _ ui
Ci dt + E TijVj + Ii (B6)Ri

J

By substituting equation (B6) into equation (B5), we can write

dE_ E Ci dVi dui (B7)
dt dt dt

i

With the relation dVi/dt = (dVi/dui)(dui/dt), it follows from equation (B7) that

- _ \dt]dt i
(B8)

Assuming that the transfer function is monotonically increasing (dVi/dui > 0) and with Ci > O,

each term in the sum of equation (B8) is nonnegative. Thus,

dE
-- < 0 (B9a)
dt -

and
dE
-- = 0 (B9b)
dt
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Figure B 1. Illustration of two different sigmoidal transfer functions V/= g(ui), their inverse functions ui = g-1 (17/),

and their integrals for different values of gain A.
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(a) _. = 5.

i

E

(b) k=10.

Figure B2. Plot of energy function according to equation (B1) for "Flip-Flop" in sketch A. T/j = -2; Ii = 1; ri = 1;

Ci = 1; transfer function as shown in figure Bl(al).

43



when dui/dt = 0 for all units i. Since the energy equation (B1) is bounded, equation (B9)
implies that equation (B1) is a Liapunov function for the system equation (B6). This means

that any time evolution of the system decreases the energy equation (B1) by moving to a local
energy minimum at which point the motion of the system stops.
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